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Outline

1 Branching Random Walk (BRW)

2 Main result: Conditional central limit theorem

3 Sketch of the proof

4 Applications: Conditional limit theorems
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Branching Random Walk (BRW)

Given a probability measure {pk}k≥0 on N (called offspring distribution) and a probability
measure G on R, the branching random walk is defined as follows.

At time 0, there is one particle positioned at 0, denoted by Z0.

It splits into a random number of particles according to {pk}k≥0, meanwhile, each
of the particles are positioned independently (with respect to their parent)
according to the same probability measure G, denoted by Z1.

Similarly, each particle in Z1 splits independently according to {pk}k≥0 and is
positioned independently according to G, which forms Z2.

And so on.

Assume: the reproduction and displacement mechanisms are independent.
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Branching Random Walk (BRW)
We use the classical Ulam–Harris notation for discrete trees.

T: the genealogical Galton–Watson tree of this system rooted at ∅.

V(u): the position of u.

|u|: the generation of u.

Branching random walk: the random measure Zn =
∑∑∑

u∈T:|u|=n δV(u).

Zn(A) := #{u ∈ T : V(u) ∈ A, |u| = n} : the number of particles in the n-th
generation located in A.

Nn := Zn(R): the size of n-th generation. Then {Nn;n ≥ 0} is a Galton-Watson
process (GW process) with offspring distribution {pk}k≥0, which is called
supercritical, critical, and subcritical according to m :=

∑
kpk > 1, = 1 and < 1,

respectively.

f(s) :=
∑

k pksk, s ∈ [0, 1]. It is easy to obtain the generating function of Nn given
by the iterate

fn(s) = f (fn−1(s)) , f0(s) = s, f1(s) = f(s).
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Known results

The intensity measure of Zn is mnGn∗, where Gn∗ is the n-fold convolution of G.

If G has mean µ and variance σ2
0 < ∞, then for any x ∈ R,

m−nE
[
Zn((−∞,

√
nσ0x + nµ])

]
= Gn∗(

√
nσ0x + nµ) → Φ(x), n → ∞,

where Φ(x) is the standard normal distribution function.
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Known results

Supercritical BRW (m > 1):

Harris (1963) first conjectured the following central limit theorem (CLT) for the
supercritical BRW: if G has mean zero and variance one,

m−nZn((−∞,
√

nx]) → WΦ(x) in probability, n → ∞, (1)

where W is the limit of the additive martingale {m−nNn} in GW process.
Stam (1966), Kaplan and Asmussen (1976): under the assumption“particles’
displacement are independent of their reproduction”, and obtained that the
convergence holds almost surely.

Klebaner (1982), Biggins (1990): removed the assumption, and extended these
results to the branching random walk in time-varying environment.
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Known results

In subcritical case, the processes will die out with probability one.

Subcritical branching Brownian (BBM) motion with absorption:

Liu (2021): obtained a Yaglom type asymptotic result for subcritical BBM with
absorption.

Subcritical BRW (m < 1):

(1) holds almost surely.
Q: What’s the conditional central limit theorem for subcritical BRW?
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Assumption & Question

Assumption
the reproduction and displacement mechanisms are independent.

0 < m < 1, σ2 := Var N1 < ∞.∫
R x dG(x) = 0,

∫
R x2dG(x) = 1.

Question
In subcritical BRW, what’s the asymptotic result of L (Zn((−∞,

√
nx]) | Nn > 0) under

the assumptions as n → ∞?
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Previous results for subcritical GW process

Yaglom’s theorem
For 0 < m < 1, then

L(Nn | Nn > 0)
w−→ L(ξ),

where w−→ means weak convergence, and we say random variable ξ is the Yaglom limit
of GW process {Nn;n ≥ 0}.

Yaglom (1947): showed that such limit exists when m < 1 and N1 has a finite
second moment.
Heathcote, et al. (1967), Joffe (1967), Athreya and Ney (1972): generalized to the
case without the second moment assumption.
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Previous results for subcritical GW process

More generally, it is meaningful to extend to condition on {Nn+l > 0}, l = 1, 2, · · · .

Conditional limit theorem (Athreya and Ney, 1972)
For 0 < m < 1, then

lim
n→∞

P (Nn = j | Nn+l > 0) = bj(l) ≥ 0, j ≥ 1,

and
∑

j≥1 bj(l) = 1, its generating function is m−l[B(s)− B(sfl(0))], where B(s) is the
generating function of Yaglom limit.
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Previous results for subcritical GW process
As l → ∞, the limit distribution of L (Nn | Nn+l > 0) determines a Markov process
whose n-step transition probabilities are given by

Qn(i, j) = lim
l→∞

P (Nn = j | Nn+l > 0,N0 = i) ,

and we call the above Markov process is the Q-process associated with {Nn;n ≥ 0}.

The positive recurrence for Q-process
For 0 < m < 1, the Q-process is positive recurrent if and only if

∑
k(k log k)pk < ∞. In

the positive recurrent case the stationary measure for Q is

πj = φ(0)jbj, j = 1, 2, · · · ,

where bj = P(ξ = j), φ(0) = limn→∞ m−nP(Nn > 0). Furthermore, the generating
function of {πj}j≥1 is φ(0)sB′(s).

Joffe (1967), Athreya and Ney (1972): studied the positive recurrence for Q-process.
Remark: Heathcote, et al. (1967), Athreya and Ney (1972) showed that φ(0) > 0
if and only if

∑
k(k log k)pk < ∞.
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Main result

Theorem 1 (Conditional central limit theorem)
Suppose that assumptions hold, then for all x ∈ R,

L
(
Zn((−∞,

√
nx]) | Nn > 0

) w−→ L
(
ξ1{N≤x}

)
, n → ∞,

where N is a standard normal random variable and independent of ξ, which is a Yaglom
limit of the subcritical GW process {Nn;n ≥ 0}.
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Remarks

The limit variable in Theorem 1 reflects two parts of the randomness: the Yaglom
limit variable comes from the subcritical branching, and the normal variable comes
from the space displacement.

In supercritical BRW, Kaplan and Asmussen (1976) decomposed Zn((−∞,
√

nx])
mn at

kn, where kn = nβ , 0 < β < 1. Since Nkn → ∞ as n → ∞, they use “the law of
large numbers” (see Kaplan and Asmussen (1976), Lemma 1) for the first kn
generation of BRW to get W. Since n − kn → ∞ as n → ∞, they then use CLT for
the last n − kn generation of BRW to get Φ(x).

In subcritical BRW, conditioned on {Nn > 0}, Nn doesn’t tend to infinity as
n → ∞. So we need a new decomposition.
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Sketch of the proof

Our goal:

L
(
Zn((−∞,

√
nx]) | Nn > 0

) w−→ L
(
ξ1{N≤x}

)
, n → ∞, (2)

Basic tools: reduced tree, the many-to-few formula.
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Sketch of the proof: reduced tree

Reduced tree: obtained by removing all branches of the original GW tree T, which
don’t extend to generation n.

T̂n: the reduced tree conditioned on survival up to time n, which has the root ∅.

T̂k,n := {u ∈ T̂n : |u| = k}.

N̂k,n := #T̂k,n, N̂n := N̂n,n.
* L(N̂n) = L(Nn | Nn > 0)

w−→ L(ξ), as n → ∞.
* N̂n−τ,n converges to 1 in law as n then τ → ∞.
* Fleischmann, et al. (1977) : {N̂k,n; 0 ≤ k ≤ n} is a non-homogeneous GW

process, and its offspring distribution {pl(ek(n))}l≥0 at time k is given by∑
l≥0

pl(ek(n))sl =
f (fn−k−1(0) + s (1− fn−k−1(0)))− fn−k(0)

1− fn−k(0)
.
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Sketch of the proof: reduced tree

uv: the concatenation of u and v. In particular, ∅u = u∅ = u.
z ∈ T̂n, the subtree T̂n rooted at z is defined by T̂n(z) := {v : zv ∈ T̂n}.

T̂k−|z|,n(z) :=
{

u ∈ T̂n(z) : |zu| = k
}
, |z| ≤ k ≤ n.

N̂k−|z|,n(z) := #T̂k−|z|,n, |z| ≤ k ≤ n.
T̂n(z) := ∪n

k=|z|T̂k−|z|,n

Note T̂n(∅) = T̂n, T̂k,n(∅) = T̂k,n, N̂k,n(∅) = N̂k,n, N̂n(∅) = N̂n.
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Sketch of the proof: reduced tree

Lemma 1
For each z ∈ T̂n, we have

N̂n−|z|,n(z)
d
= N̂n−|z|,n−|z|(∅) = N̂n−|z|.

Intuitively,
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Sketch of the proof

Strategy of the proof of Theorem 1 Let Ẑn is a point process with law
L (Zn | Nn > 0). We decompose Ẑn+τ at generation n by T̂n+τ as

Ẑn+τ ((−∞,
√

n + τx]) d
=

∑
z∈T̂n,n+τ

 ∑
y∈T̂τ,n+τ (z)

1{V(zy)≤
√

n+τx}


:= An+τ + Bn+τ ,

where

An+τ :=
∑

z∈T̂n,n+τ

 ∑
y∈T̂τ,n+τ (z)

1{V(zy)≤
√

n+τx}

− N̂τ,n+τ (z)1{
Ñz≤

√
n+τx−V(z)

}
 ,

Bn+τ :=
∑

z∈T̂n,n+τ

N̂τ,n+τ (z)1{Ñz≤
√

n+τx−V(z)},

and under P, Ñz, z ∈ T̂n,n+τ are mutually independent, for fixed z, Ñz is distributed as
Gτ∗ , and independent of

(
V(u) : u ∈ T̂k,n+τ , 0 ≤ k ≤ n

)
and N̂τ,n+τ (z).
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Sketch of the proof

as n first then τ tends to infinity, An+τ → 0, thus

Ẑn+τ ((−∞,
√

n + τx]) d∼ Bn+τ :=
∑

z∈T̂n,n+τ

N̂τ,n+τ (z)1{Ñz≤
√

n+τx−V(z)}.

By Lemma 1, we have N̂τ,n+τ (z) d
= N̂τ,τ (∅) = N̂τ , and recall N̂n,n+τ

d∼ 1, as n first
then τ tends to infinity,

Bn+τ
d∼

∑
z∈T̂n,n+τ

N̂τ1{Ñz≤
√

n+τx−V(z)}
d∼ N̂τ1{

V(z)√
n+τ

≤x− Ñz√
n+τ

} d∼ ξ1{N≤x}. □
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Sketch of the proof: the asymptotic behavior of An+τ

Using Lemma 1, we get

An+τ
d
=

∑
z∈T̂n,n+τ

 ∑
y∈T̂τ,τ

1{V(y)≤
√

n+τx−V(z)}

− N̂τ1{Ñz≤
√

n+τx−V(z)}

 ,

where (V(u) : u ∈ T̂k,n+τ , 0 ≤ k ≤ n) is independent of (V(u) : u ∈ T̂τ ), then we have

A2
n+τ

d
=

∑
z∈T̂n,n+τ

 ∑
y∈T̂τ,τ

1{V(y)≤
√

n+τx−V(z)} − N̂τ1{Ñz≤
√

n+τx−V(z)}

2

+
∑

z1,z2∈T̂n,n+τ
z1 ̸=z2

∏
i=1,2

 ∑
y∈T̂τ,τ

1{V(y)≤
√

n+τx−V(zi)} − N̂τ1{Ñzi≤
√

n+τx−V(zi)}

 .

(i)
∑

z1,z2∈T̂n,n+τ
z1 ̸=z2

1 → 0, as n then τ → ∞.

(ii) limτ→∞ E[N̂τ ] =
1

φ(0)
< ∞.
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Sketch of the proof: the asymptotic behavior of An+τ

E[A2
n+τ ]

d∼ E

 ∑
z∈T̂n,n+τ

 ∑
y∈T̂τ,τ

1{V(y)≤
√

n+τx−V(z)} − N̂τ1{Ñz≤
√

n+τx−V(z)}


2

= E

 ∑
z∈T̂n,n+τ

F(n,n + τ,V(z))

 , as n then τ → ∞,

where for a ∈ R, under P, Ñ has the same distribution as Ñz and is independent of Xn
and N̂τ ,

F(n,n + τ, a) = E


 ∑

y∈T̂τ,τ

1{V(y)≤
√

n+τx−a} − N̂τ1{Ñ≤
√

n+τx−a}


2

= E
[
Ẑτ ((−∞,

√
n + τx − a])2

]
−2E

N̂τ

∑
y∈T̂τ,τ

1{V(y)≤
√

n+τx−a}1{Ñ≤
√

n+τx−a}


+ E

[(
N̂τ1{Ñ≤

√
n+τx−a}

)2
]

:= F1(n,n + τ, a)− 2F2(n,n + τ, a) + F3(n,n + τ, a).
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Lemma 2 (Many-to-one formula)
For every n, τ ∈ {1, 2, · · · }, for any 0 ≤ k ≤ n + τ, x0 ∈ R and Borel measurable function
g on R, we have

Eδx0

 ∑
u∈T̂k,n+τ

g(V(u))

 = mk 1− fn+τ−k(0)

1− fn+τ (0)
Ex0 [g (Xk)] ,

where X = (Xn : n ≥ 0) is the spine random walk with the jump law G under P.

Using Lemma 2, we obtain

E[A2
n+τ ]

d∼ mn 1− fτ (0)
1− fn+τ (0)

· E [F (n,n + τ,Xn)]

= E [F1 (n,n + τ,Xn)]− 2E [F2 (n,n + τ,Xn)] + E [F3 (n,n + τ,Xn)] .
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Sketch of the proof: the asymptotic behavior of An+τ

Lemma 3 (Second-order moment)
For every n, τ ∈ {1, 2, · · · }, for any a ∈ R,

E
[
Ẑτ ((−∞,

√
n + τx − a])2

]
=

mτ

1− fτ (0)
P
(
X′
τ ≤

√
n + τx − a

)
+

m2τ−1

1− fτ (0)
f′′(1)

τ∑
r=1

m−rP
(
X
(1)
r−1,τ ≤

√
n + τx − a,X(2)

r−1,τ ≤
√

n + τx − a
)
,

where under P, for each j, (X′
i : i ≥ 0), (X

(1)
j,i : i ≥ 0), (X

(2)
j,i : i ≥ 0) are spine random

walk whose jump distribution is G, and satisfying
(1) for all i ≤ j,X(1)

j,i = X
(2)
j,i .

(2) (X(1)
j,j+i − X

(1)
j,j : i ≥ 0) and (X

(2)
j,j+i − X

(2)
j,j : i ≥ 0) are independent.
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Sketch of the proof: the asymptotic behavior of An+τ

By Lemma 3 and some calculations, we can get

Proposition 1
Suppose that assumptions hold, we have

lim sup
n→∞

EA2
n+τ ≤ h1(τ),

where h1(τ) → 0 as τ → ∞.
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Sketch of the proof: the asymptotic behavior of Bn+τ

By some calculations, we can obtain,

E
[
sBn+τ

]
= E

[
s
∑

z∈T̂n,n+τ
N̂τ (z)1{Ñz≤

√
n+τx−V(z)}

]
= E

 ∏
z∈T̂n,n+τ

R(n,n + τ,V(z))

 ,

where for a ∈ R, s ∈ [0, 1],

R(n,n + τ, a) = P
(
Ñz ≤

√
n + τx − a

)
E
[
sN̂τ

]
+ 1− P

(
Ñz ≤

√
n + τx − a

)
.

Then, for fixed z0 ∈ T̂n,n+τ ,
(i) Using the fact that

∣∣∏n
m=1 zm −

∏n
m=1 wm

∣∣ ≤ θn−1 ∑n
m=1 |zm − wm|, where

|zi| ≤ 1, |wi| ≤ 1, then

|E
[
sBn+τ

]
− E[R (n,n + τ,V (z0))·

∏
z∈T̂n,n+τ

z̸=z0

1]| ≤ E[
∑

z∈T̂n,n+τ
z̸=z0

(1− R(n,n + τ,V(z0)))]

≤E
[
N̂n,n+τ − 1

]
→ 1− fτ (0)

φ(0)mτ
− 1, n → ∞.
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Sketch of the proof: the asymptotic behavior of Bn+τ

(ii) Since the law of V(z0) is Gn∗, and V (z0) is indepnedent of Ñz0 , then

E [R (n,n + τ,V (z0))] → Φ(x)E
[
sN̂τ

]
+ 1− Φ(x),

whose limit is equal to E
[
sξ1{N≤x}

]
, as τ → ∞.

Proposition 2
Suppose that assumptions hold, then for all s ∈ [0, 1], we have

lim sup
n→∞

∣∣∣E [
sBn+τ

]
− E

[
sξ1{N≤x}

]∣∣∣ ≤ h2(τ, s),

where h2(τ, s) → 0 as τ → ∞.
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Applications: Conditional limit theorems

Corollary
Suppose that assumptions hold, we have, for fixed l ≥ 1, for all x ∈ R,
(i) For j ∈ N,

lim
n→∞

P
(
Zn((−∞,

√
nx]) = j | Nn+l > 0

)
= bj(l; x) ≥ 0

where
∑

j≥0 bj(l; x) = 1. Recall B(s) = E
[
sξ
]
, then the generating function of

{bj(l; x)}j≥0 is defined by

1

ml {Φ(x) [B(s)− B (sfl(0))] + (1− Φ(x)) [1− B (fl(0))]} .

(ii) As l → ∞ and then n → ∞,

L
(
Zn((−∞,

√
nx]) | Nn+l > 0

) w−→ L
(
ζ1{N≤x}

)
,

where the standard normal random variable N is independent of random variable ζ with
distribution {πj}j≥1.
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Applications: Conditional limit theorems

Remark
The assumption of G can be generalized to the case that G is in the domain of
attraction of a stable law, that is, there exists a non-degenerate random variable η,
{an} ⊂ R, {bn} ⊂ R+ such that, as n → ∞, (Sn − an)/bn

d−→ η, where Sn is the sum
of n independent identically distributed variables with law G. Under this assumption, we
only need to replace (−∞,

√
nx], N and Φ(x) with (−∞, bnx + an], η and P (η ≤ x)

respectively in the above results.
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Thank you!
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